XINLAN ${ }^{\text {B }}$

NSSHOEU+3E + ST 0.6/1kV Heavy Duty Flexible Cable

Applications

These cables are designed for the connection of mobile equipment and machines under very high mechanical loads in dry and damp areas, outdoors and in explosion hazard areas, particularly in mining and industry, quarries and building sites.

Standards

VDE 0250 Part 812

Construction

Conductors: Flexible stranded tinned copper conductor, class 5 according to DIN VDE 0295.
Insulation: Heat resistant EPR type 3GI3.
Earth Conductor: Distributed as spiral of tinned copper wires over core insulating coverings (coding .../3E) or located concentrically between the inner and outer sheaths (coding ...kon).
Control Cores:Laid in the interstices, film wrap.
InnerSheath: Rubbertype GM1b.
Outer Sheath: Chlorinated rubber type 5GM5, abrasion and tear resistant, oil resistant and flame retardant.

Dimensions and Weight

Number of Cores \times Nominal Cross Section	Minimium Overall Diameter	Maximum Overall Diameter	Nominal Weight
No. $\times \mathrm{mm}^{2}$	mm	mm	kg/km
$3 \times 2.5+3 \times 2.5 / 3 \mathrm{E}$	15.0	18.0	410
$3 \times 4+3 \times 4 / 3 \mathrm{E}$	19.0	22.0	500
$3 \times 6+3 \times 6 / 3 \mathrm{E}$	18.0	21.0	660
$3 \times 10+3 \times 10 / 3 \mathrm{E}$	22.0	26.0	950
$3 \times 16+3 \times 16 / 3 \mathrm{E}$	28.0	32.0	1350
$3 \times 25+3 \times 16 / 3 \mathrm{E}$	29.0	33.0	1800
$3 \times 50+3 \times 25 / 3 \mathrm{E}$	40.0	44.0	3300
$3 \times 70+3 \times 35 / 3 \mathrm{E}$	44.0	49.0	4360
$3 \times 95+3 \times 50 / 3 \mathrm{E}$	52.0	57.0	5740
$3 \times 120+3 \times 70 / 3 \mathrm{E}$	56.0	61.0	6870

XINLAN ${ }^{\text {B }}$

$3 \times 150+3 \times 70 / 3 \mathrm{E}$	62.0	68.0	8140
$3 \times 2.5+3 \times 2.5 / 3 \mathrm{E}+3 \times 1.5 \mathrm{ST}$	18.0	20.0	500
$3 \times 4+3 \times 4 / 3 \mathrm{E}+3 \times 1.5 \mathrm{ST}$	19.0	22.0	550
$3 \times 6+3 \times 6 / 3 \mathrm{E}+3 \times 1.5 \mathrm{ST}$	20.0	24.0	810
$3 \times 10+3 \times 10 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	24.0	28.0	1150
$3 \times 16+3 \times 16 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	28.0	32.0	1470
$3 \times 25+3 \times 16 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	30.0	34.0	1960
$3 \times 35+3 \times 16 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	34.0	38.0	2590
$3 \times 50+3 \times 25 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	41.0	46.0	3560
$3 \times 70+3 \times 35 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	44.0	49.0	4470
$3 \times 95+3 \times 50 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	52.0	57.0	5850
$3 \times 120+3 \times 70 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	51.0	56.0	6800
$3 \times 150+3 \times 70 / 3 \mathrm{E}+3 \times 2.5 \mathrm{ST}$	59.0	64.0	8100
$3 \times 2.5 / 2.5 \mathrm{KON}$	14.0	17.0	380
$5 \times 2.5 / 2.5 \mathrm{KON}$	18.0	21.0	560
$5 \times 4 / 4 \mathrm{KON}$	20.0	24.0	710
$5 \times 6 / 6 \mathrm{KON}$	20.0	24.0	910
$10 \times 1.5 / 1.5 \mathrm{KON}$	20.0	29.0	800
$10 \times 2.5 / 2.5 \mathrm{KON}$	26.0		1100

